Active Fault-Tolerant Control of Timed Automata with Guards
نویسندگان
چکیده
منابع مشابه
On Timed Automata with Input-Determined Guards
We consider a general notion of timed automata with inputdetermined guards and show that they admit a robust logical framework along the lines of [6], in terms of a monadic second order logic characterisation and an expressively complete timed temporal logic. We then generalise these automata using the notion of recursive operators introduced by Henzinger, Raskin, and Schobbens [9], and show th...
متن کاملTimed Automata Approach to Distributed and Fault Tolerant System Verification
This article deals with a distributed, fault-tolerant real-time application modeling by timed automata. The application under consideration consists of several processors communicating via Controller Area Network (CAN); each processor executes an application that consists of fault-tolerant tasks running under an operating system (e.g. OSEK) and using inter-task synchronization primitives. For s...
متن کاملFault-Tolerant Control of a Nonlinear Process with Input Constraints
A Fault-Tolerant Control (FTC) methodology has been presented for nonlinear processes being imposed by control input constraints. The proposed methodology uses a combination of Feedback Linearization and Model Predictive Control (FLMPC) schemes. The resulting constraints in the transformed process will be dependent on the actual evolving states, making their incorporation in the de...
متن کاملOn Continuous Timed Automata with Input-Determined Guards
We consider a general class of timed automata parameterized by a set of “input-determined” operators, in a continuous time setting. We show that for any such set of operators, we have a monadic second order logic characterization of the class of timed languages accepted by the corresponding class of automata. Further, we consider natural timed temporal logics based on these operators, and show ...
متن کاملFault-tolerant adder design in quantum-dot cellular automata
Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for faster speed, smaller size, and low power consumption than semiconductor transistor based technologies. Previously, adder designs based on conventional designs were examined for implementation with QCA technology. This paper utilizes the QCA characteristics to design a fault-tolerant adder that is more...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IFAC-PapersOnLine
سال: 2017
ISSN: 2405-8963
DOI: 10.1016/j.ifacol.2017.08.2398